Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[통계/수학] 문제 3번 정규 분포 수식 수정 #192

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion answers/1-statistics-math.md
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ P(X=1)와 같은 식으로 표현하고, 이는 "주사위를 굴렸을 때, 1
예를 들어 가장 널리 쓰이는 확률 모형의 하나인 `가우시안 정규 분포(Gaussian normal distribution)`는 다음과 같은 수식으로 확률 밀도 함수를 정의한다.

$$
N(x ; \mu, \sigma) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x- \mu^2)}{2 \sigma^2}}
N(x ; \mu, \sigma) = \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x- \mu)^2}{2 \sigma^2}}
$$

다음과 같은 함수들이 확률모형에 포함될 수 있다. (자세한 내용은 [확률통계 기초용어 - EG 공간](https://kongdols-room.tistory.com/131) 참고)
Expand Down